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Abstract

The transmission matrix and frequency characteristics of transient heat conduction through a multilayer spherical structure are
by applying Laplace transforms in this paper. The frequency domain regression (FDR) [S.W. Wang, Y.M. Chen, Appl. Therma
21 (6) (2000) 683] method is introduced to construct some simple polynomials-transfer functions from the frequency characteristics.
polynomials-transfer functions are further used to calculate the transient heat flow of the spherical structure including its thermal
factors andZ-conduction transfer function (CTF) coefficients. This approach is very easy and simple to implement in programm
avoids the case of missing roots in finding the roots of characteristic equation. The examples and comparisons have demonstra
approach has high computation accuracy.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

In order to evaluate building thermal performance a
energy consumption, it becomes increasingly impor
to accurately predict transient heat gain through vari
building envelopes [1]. The thermal response factor met
and the conduction transfer function (CTF) method
the most popular tools currently available for the hou
thermal load calculation through building envelopes
the design, simulation and energy analysis of build
heating, ventilation and air-conditioning (HVAC) system
The thermal response factors are the hourly series of
flux at the inside and outside surfaces of a one-dimensi
multilayer structure caused by unit triangular tempera
pulses alternately applied to the inside and outside sur
while holding the opposite surface at constant tempera
[2]. The conduction transfer function is theZ-transform
for the thermal response factors of the one-dimensio
multilayer structure [3]. The major advantages of the t
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methods are that they are not numerical in the sens
finite difference techniques, and they do not require
periodic and linear boundary conditions for heat conduc
calculation. They are also particularly well suited for use
computer programs together with the weather data reco
hourly.

In modern buildings, more and more semi-spherical
spherical envelopes such as the roofs of vaulted sh
are constructed to implement some special functions
improve the artistic appearance of architectures. Some
semi-spherical structures are pieced up with many p
pieces of the same polygon, which can be calculated
plane constructions. Most structures of small size are p
semi-spherical or spherical. However, almost all relev
papers published are related to calculating the transient
conduction through multilayer plane constructions [2–
Only Kusuda has discussed the calculation for the ther
response factors of a multilayer pure spherical structur
finding the roots of its characteristic equation [10]. T
characteristic equation of a multilayer spherical struct
is much more complicated than that of a multilayer pla
wall. It is a tough task to calculate the thermal respo
factors and CTF coefficients of a multilayer plane wall
numerically finding the roots of its characteristic equati
Elsevier SAS. All rights reserved.
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Nomenclature

A,B,C,D transmission matrix element
a thermal diffusivity . . . . . . . . . . . . . . . . . . . m2·s−1

b, d CTF coefficients
cp specific heat . . . . . . . . . . . . . . . . . . . . J·kg−1·K−1

G s- or z-transfer function
h heat transfer coefficient . . . . . . . . . W·m−2·K−1

K thermal transmittance . . . . . . . . . . . W·m−2·K−1

l term number of numerator
M transmission matrix
m term number of denominator
N number of frequency points
n layer number of a solid structure
p Laplace variable
Q heat flow . . . . . . . . . . . . . . . . . . . . . . . . . . . W·m−2

r radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
s Laplace variable or roots
T temperature . . . . . . . . . . . . . . . . . . . . . . . .◦C or K
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s or h

X,Y,Z thermal response factors . . . . . . . . . W·m−2·K−1

z time delay operator

Greek symbols

α,β coefficient of polynomials-transfer function
λ thermal conductivity . . . . . . . . . . . . W·m−1·K−1

�τ time interval of discretization. . . . . . . . . . . s or h
δ thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

σ residue . . . . . . . . . . . . . . . . . . . . . . . . W·m−1·K−1

ω frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . rad·s−1

Subscripts

i integer count
in inside
k integer count
out outside
X,Y,Z outside, across and inside heat conduction
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There is a risk to miss several roots in numerically search
especially in case of two adjacent roots lying close toge
[2]. This may lead to incorrect results. It is a mu
tough and difficult work to calculate the transient h
flow through a multilayer spherical structure by search
for the roots of its characteristic equation. Although fin
difference methods [8], state space methods [7,9]
time-domain methods [3] are presented for calculating
transient heat conduction through plane walls, they are q
complicated in programming and need considerable l
computation time for this purpose. In the current build
thermal load calculation, the hourly heat gain through
spherical structures is calculated approximately by be
regarded as plane ones. For the spherical structur
small size, this approximation may result in a great er
Therefore, we need to develop an accurate and fast appr
to calculate the transient heat flow through the spher
structures.

A simple, accurate and efficient frequency-domain
gression (FDR) method is developed to calculate trans
heat flow including thermal response factors and CTF c
ficients of multilayer plane walls [11,12]. In this paper, t
FDR method is introduced to calculate the thermal respo
factors and CTF coefficients of multilayer spherical str
tures. The FDR method is a numerical approach to im
ment easily and with very high accuracy. Through the c
study of the FDR method, we will discuss the condition u
der which the multilayer pure semi-spherical and spher
structure can be approximately treated as a multilayer p
wall while the results holding the accuracy to meet the
quirements of building thermal load calculation.
f

h

2. Transmission matrix of transient heat conduction
through a spherical structure

2.1. Governing equations

Within the temperature varying range of building e
velopes, we can assume that a single-layer spherical s
ture is homogeneous, isotropic and has constant the
properties (i.e.,λ,ρ andcp), and that the transient heat co
duction along its radial direction is one-dimensional. Th
the heat conduction differential equation through the sin
layer spherical structure is given in Eq. (1).

∂2T (r, t)

∂r2 + 2

r

∂T (r, t)

∂r
= 1

a

∂T (r, t)

∂t
,

t > 0, r1 < r < r2 (1)

whereT is temperature,a andt are thermal diffusivity and
time, respectively.r1 andr2 are the inside and outside radi
of the spherical structure, respectively. The heat flowQ at
an arbitrary timet and locationr in the spherical structure i
given in Eq. (2).

Q(r, t) = −λ
∂T (r, t)

∂r
, t > 0, r1 < r < r2 (2)

whereλ is the thermal conductivity.

2.2. Transmission matrix of a single-layer spherical
structure

With θ = rT , Eq. (1) can be rewritten as follows.

∂2θ(r, t)

∂r2 = 1

a

∂θ(r, t)

∂t
(3)

Assuming that the temperature of the whole envel
holds at 0◦C whent = 0, i.e.,T (r,0) = 0 (or θ(r,0) = 0),
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Eqs. (4) and (5) can be obtained by applying Laplace tr
forms to the time variablet in Eqs. (3) and (2), respectivel

a
d2θ(r, s)

dr2 − sθ(r, s) = 0 and (4)

Q(r, s) = −λ
dT (r, s)

dr
(5)

whereT (r, s), θ(r, s) andQ(r, s) are the Laplace transform
of T (r, t), θ(r, t) and Q(r, t) with respect to the time
variable t , respectively. Letx = r − r1, Eq. (4) can be
rewritten as Eq. (6).

a
d2θ(x + r1, s)

dx2
− sθ(x + r1, s) = 0 (6)

By applying Laplace transforms to the variablex in Eq. (6),
it can be expressed in Eq. (7).

a
[
p2F(p, s) −pθ(r1, s) − θ ′(r1, s)

] − sF (p, s) = 0 (7)

whereF(p, s) is the Laplace transform ofθ(x + r1, s) with
respect to the variablex andθ ′(r1, s) = dθ(r,s)

dr |r=r1. Thus,
F(p, s) is found from Eq. (7) as follows.

F(p, s) = p2

p2 − s/a
θ(r1, s) + 1

p2 − s/a
θ ′(r1, s) (8)

The inverse Laplace transforms ofF(p, s) with respect to
the Laplace variablep is given in Eq. (9).

θ(x + r1, s) = ch
(√

s/a x
)
θ(r1, s)

+ 1√
s/a

sh
(√

s/a x
)
θ ′(r1, s) (9)

We can obtain Eq. (10) by substitutingθ(r, s) = rT (r, s) into
Eq. (9),

rT (r, s)

= ch
(√

s/a (r − r1)
)
r1T (r1, s)

+ 1√
s/a

sh
(√

s/a (r − r1)
)[
r1T

′(r1, s) + T (r1, s)
]
(10)

Thus, the Laplace transform of the temperature at
location r2 with respect to the time variablet can be
expressed in the Laplace transforms of the temperature
heat flow at the locationr1 as Eq. (11).

T (r2, s) = 1

r2

[
ch

(√
s/a δ

)
r1 + 1√

s/a
sh

(√
s/a δ

)]
T (r1, s)

− r1

λr2
√
s/a

sh
(√

s/a δ
)
Q(r1, s) (11)

whereδ = r2 − r1, which is the thickness of the single-lay
spherical structure. The Laplace transform of the heat flo
the locationr2 can be expressed in the Laplace transform
the temperature and heat flow at the locationr1 as Eq. (12).
Fig. 1. The relationship between the temperature and heat flow at both
of a single-layer spherical structure.

Q(r2, s)

= −λ

[
δ

r2
2

ch
(√

s/a δ
)

+ 1

r2
2

(
r1r2

√
s/a − 1√

s/a

)
sh

(√
s/a δ

)]
T (r1, s)

+ r1

r2
2

[
r2ch

(√
s/a δ

) − 1√
s/a

sh
(√

s/a δ
)]

Q(r1, s)

(12)

From Eqs. (11) and (12), we can obtain the transmis
equation of heat conduction through the single-layer sph
cal structure shown in Eq. (13) and Fig. 1, which relates
temperature and heat flow at both sides.[
T (r1, s)

Q(r1, s)

]
= M(s)

[
T (r2, s)

Q(r2, s)

]

=
[
A(s) B(s)

C(s) D(s)

][
T (r2, s)

Q(r2, s)

]
(13)

The elements of the transmission matrix are given
Eq. (14),

A(s) = r2

r1
ch

(√
s/a δ

) − 1

r1

1√
s/a

sh
(√

s/a δ
)

B(s) = r2

r1λ

1√
s/a

sh
(√

s/a δ
)

C(s) = λδ

r2
1

ch
(√

s/a δ
)

+ λ

r2
1

(
r1r2

√
s/a − 1√

s/a

)
sh

(√
s/a δ

)
D(s) = r2

r1
ch

(√
s/a δ

) + r2

r2
1

1√
s/a

sh
(√

s/a δ
)




(14)

EquationB(s) = 0 is called the characteristic equation [2]
heat conduction through the single-layer spherical struct

2.3. Transmission matrix of a multilayer spherical structu

Most building envelopes consist of more than three lay
including the surface air films at both sides. The to
transmission matrix of a multilayer spherical structure
be obtained by multiplying the transmission matrices of
layers including the surface air films at both sides. Assum
a spherical structure consists ofn layers excluding its inside
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Fig. 2. The relationship between the temperature and heat flow
multilayer spherical structure.

and outside surface air films, the relationship between
temperature and heat flow at both sides (shown in Fig
can be expressed in Eq. (15).[
Tin(s)

Qin(s)

]
= 
M(s)

[
Tout(s)

Qout(s)

]

=
[
Ā(s) 
B(s)


C(s) 
D(s)

][
Tout(s)

Qout(s)

]
(15)

where 
M(s) is the total transmission matrix,


M(s) = Min(s) · M1(s) · · ·Mn(s) · Mout(s)

=
[
Ain(s) Bin(s)

Cin(s) Din(s)

][
A1(s) B1(s)

C1(s) D1(s)

]
· · ·

×
[
An(s) Bn(s)

Cn(s) Dn(s)

][
Aout(s) Bout(s)

Cout(s) Dout(s)

]
(16)

andMk(s) (k = 1,2, . . . , n) is the transmission matrix of th
kth layer, which elements are given in Eq. (14), subscr
in and out indicate the inside and outside of the struct
respectively. For the surface air films at both sides,
transmission matrix can be expressed in Eq. (17).

Min(s) =
[

1 −1/hin

0 1

]
,

Mout(s) =
[

1 −1/hout

0 1

] (17)

whereh is the heat transfer coefficient of the surface air fi
Applying matrix transform to Eq. (15), we can obtain t

transmission equation (18) relating the temperatures to
heat flows at both sides.[
Qout(s)

Qin(s)

]
=

[−GX(s) GY ′(s)

−GY (s) GZ(s)

][
Tout(s)

Tin(s)

]
(18)

where GX(s) and GZ(s) are the transfer functions o
outside and inside heat conduction of the spherical struc
 ,

respectively,GY (s) andGY ′(s) are the transfer functions o
cross heat conduction from its outside to inside and fr
the inside to outside, respectively. For ann-layer spherica
structure,Ā(s)
D(s)− 
C(s)
B(s) = (rout/rin)

2, whererin and
rout are its inside and outside radiuses, respectively. Th
transfer functions can be expressed in Eqs. (19)–(22).

GX(s) = Ā(s)/
B(s) (19)

GY (s) = (rout/rin)
2/
B(s) (20)

GY ′′(s) = 1/
B(s) (21)

GZ(s) = 
D(s)/
B(s) (22)

Equation
B(s) = 0 is also called the characteristic equ
tion [2,10] of heat conduction through the multilayer sph
ical structure. From Eqs. (14) and (16), it can be found
the characteristic equation
B(s) = 0 is much more compli
cated than that of a multilayer plane wall, which is presen
in detail in Ref. [11]. For a multilayer plane wall, inco
rect calculation might occur due to missing several ro
in numerically searching for the roots of its characteris
equation, especially in case where two adjacent roots
close together [2]. For a multilayer spherical structure
is much more difficult to perform transient heat conduct
calculation than for a multilayer plane wall by finding t
roots of the characteristic equation, and the incorrect ca
lation might take place in the same manner. Therefore, in
study, another simple approach implemented easily is in
duced to calculate the transient heat conduction throu
multilayer spherical structure from its frequency charac
istics.

3. Frequency characteristics of heat conduction
through a spherical structure

Substitutingjω (j = √−1) for s into Eqs. (19)–(22)
we can obtained the complex functionsGX(jω),GY ′(jω),

GY (jω) andGZ(jω), which are the frequency character
tics of outside, across and inside heat conduction, res
tively [13]. They are all denoted asG(jω). These frequenc
characteristics are complex functions and generally cha
terized by their amplitude|G(jω)|, which is the absolute
value of G(jω) and phase lag, arctanimag(G(jω))

real(G(jω))
, where

real(G(jω)) and imag(G(jω)) are the real and imaginar
components ofG(jω), respectively.

In practice, it is easy to correctly work out these fo
frequency characteristics in frequency domain without fi
ing the embodied expressions of the four complex functio
The calculation procedure is that, first, the complex tra
mission matrices atN frequency points (sk = jωk, k =
1,2, . . . ,N ) are calculated by Eq. (14) for each layer
the multilayer spherical structure; second, the complex t
transmission matrix at each frequency point is obtained
applying matrix multiplication as Eq. (16); finally, all fou
frequency characteristics withN frequency points are esta
lished through Eqs. (19)–(22).
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4. Calculation for thermal response factors and CTF
coefficients

Since it is much easier to correctly calculate the f
quency characteristics of a multilayer spherical struc
than to numerically search for the roots of its characte
tic equation, we introduce the frequency domain regres
(FDR) method [11] to construct some simples-transfer func-
tions from its frequency characteristics. In the FDR meth
by minimizing the sum of the square error between
frequency characteristics of the spherical structure and
polynomial s-transfer function at all frequency points, th
coefficients of the polynomials-transfer function are eas
ily obtained by solving a set of linear equations. The sim
s-transfer functions are in the forms of the polynomial ra
of variables. For short, they are called polynomials-transfer
functions. Through the polynomials-transfer functions, it
becomes much more easy, simple and correct to calc
the thermal response factors and CTF coefficients of a m
tilayer spherical structure. The calculation procedure is
same as that developed for a multilayer plane wall an
briefly reviewed here.

Given the propertiesλ,ρ, cp and radiusr of each layer
in a multilayer spherical structure and the heat transfer
efficient hout and hin of its outside and inside surface a
films, its four frequency characteristics withN frequency
points can be easily calculated within the frequency ra
[10−n1,10−n2] needed to be concerned. For a building
velope, usually,n1 = 8, n2 = 3 and N = 10(n1 − n2)

[15]. The N frequency points are generated with eq
logarithmic paces within the frequency range (i.e.,ωk =
10−n1+(k−1)(n1−n2)/(N−1) (k = 1,2, . . . ,N)). The equivalen
polynomial s-transfer function for each frequency chara
teristic, shown in Eq. (23), can be constructed by the F
method, which is easily accomplished by solving a se
linear equations.

G̃(s) = β0 + β1s + β2s
2 + · · · + βrs

l

1+ α1s + α2s2 + · · · + αmsm
(23)

where, αi and βi are real coefficients,l and m are the
orders of the numerator and denominator, respectively.
worth noting that the choosing method for the parameter
l,m andn1, n2 is based on the error analysis of frequen
domain regression. By changing their values (l = m = 4–6,
n2 = 3–4,n1 = n2+5), we can find a minimal sum of squa
absolute error (SSAE) between the frequency characteri
of the spherical structure and the polynomials-transfer
function at all frequency points. The parameter values
the minimal SSAE are the optimal parameters we need
a great number of case studies, it has been founded tha
mean square absolute error for the optimal parameters is
than 10−14 [15].

In this study for the multilayer spherical structure
a building, the thermal response factors are the hou
discretized series of the heat flux response of its polyno
s-transfer function to a unit triangular pulse excitatio
e
s

which is a triangular temperature pulse of heightφ =
1 ◦C and base 2�τ at time t = 0 (conventionally,�τ =
1 hour). X,Y and Z are used to represent the outsid
cross and inside thermal response factors of a sphe
structure, respectively. Here, we take the cross the
response factorsY as the example for their calculatio
Y (k) (k = 0,1,2,3, . . .) are obtained by applying invers
Laplace transform tõGY (s)/s

2. The value of the factorY (0)
at timet = 0�τ is calculated using Eq. (24).

Y (0) = K +
m∑

i=1

σi

�τ

(
1− e−si�τ

)
(24)

where K is the thermal transmission of the spheri
structure. The subsequent factorsY (k) at timet = k�τ (k =
1,2,3, . . .) are calculated using Eq. (25).

Y (k) = −
m∑
i=1

σi

�τ

(
1− e−si�τ

)2
e−(k−1)si�τ (25)

where −si is the ith root of the denominator of̃GY (s),
and σi is the residue of̃GY (s)/s

2 for the ith root. The
thermal response factorsX(k) andZ(k) (k = 0,1,2,3, . . .)
can be calculated using the same formulae as Eqs.
and (25) from the polynomials-transfer functions̃GX(s)

and G̃Z(s), which are constructed respectively from t
transfer functionsGX(s) andGZ(s) using the FDR method

The conduction transfer function for the multilayer sph
ical structure is theZ-transform for the hourly-discretize
series of the thermal response of its polynomials-transfer
function to the unit triangular pulse excitation, which can
expressed as Eq. (26).

GY (z) = b0 + b1z
−1 + b2z

−2 + · · · + brz
−l

1+ d1z−1 + d2z−2 + · · · + dmz−m
(26)

where bk and dk are CTF coefficients. The formulae
calculate the CTF coefficients of a wall by employi
its polynomials-transfer functions have been addressed
detail in Refs. [14,15]. Therefore, it is very easy and sim
to implement the calculation of the thermal response fac
and CTF coefficients of multilayer spherical structu
through the FDR method.

5. Validations and comparisons

In this study, various cases for multilayer spherical str
tures are calculated to validate the accuracy, simplicity
efficiency of the present approach by performing trans
heat conduction calculation, including the thermal respo
factors and conduction transfer coefficients. Two exam
are presented here to demonstrate its computation acc
by comparisons with published results.

5.1. Thermal response factors

Kusuda [10] has provided three series of thermal respo
factors of a pure spherical structure by directly finding
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Table 1
Details of a double-layered brick spherical structure

δ [mm] λ [W·m−1·K−1] a [m2·s−1] r [mm] R [m2·kW−1]

Inside air film 0 1524 0.1468
(Inside radius)

Common brick 101.5 0.727 4.9031E–7 1524 0.1396
Face brick 101.5 1.333 7.2256E–7 1625.5 0.0762
Outside air film 0 1727 0.0587

(Outside radius)

Table 2
Comparisons between thermal response factors

k X(k)a X(k)b Y(k)a Y(k)b Z(k)a Z(k)b

[W·m−2·K−1] [W ·m−2·K−1] [W ·m−2·K−1] [W ·m−2·K−1] [W ·m−2·K−1] [W ·m−2·K−1]

0 5.244716 5.244762 0.000771 0.000802 11.178113 11.178529
1 −0.914056 −0.914150 0.051959 0.051990 −3.008711 −3.009102
2 −0.428083 −0.428144 0.198693 0.198773 −1.377879 −1.378010
3 −0.274054 −0.274035 0.284558 0.284597 −0.928462 −0.928572
4 −0.195726 −0.195731 0.294361 0.294441 −0.693077 −0.693150
5 −0.149479 −0.149453 0.270634 0.270670 −0.544614 −0.544663
6 −0.118888 −0.118904 0.236717 0.236763 −0.440343 −0.440409
7 −0.096762 −0.096758 0.202314 0.202346 −0.361622 −0.361651
8 −0.079743 −0.079723 0.170972 0.170919 −0.299441 −0.299474
9 −0.066153 −0.066152 0.143674 0.143647 −0.249024 −0.249050

10 −0.055067 −0.055080 0.120392 0.120387 −0.207560 −0.207542
11 −0.045921 −0.045937 0.100736 0.100699 −0.173199 −0.173188
12 −0.038328 −0.038329 0.084227 0.084220 −0.144611 −0.144626
13 −0.032006 −0.032026 0.070397 0.070365 −0.120779 −0.120777
14 −0.026733 −0.026745 0.058826 0.058844 −0.100890 −0.100903

a Present approach;
b Kusuda.
ture
yer
he
d in
y

by
The
uda
15

ce
ctors
ach

on-
d-
pes
unit
a-
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roots of its characteristic equation. The spherical struc
consists of an outside air film, a layer of face brick, a la
of common brick and an inside air film. In SI units, t
thickness and thermal properties of all layers are liste
Table 1. Its polynomials-transfer functions constructed b
the FDR method are given as follows.

G̃X(s) = [
6.6201s−5 + 5.1634e–2s−4 + 9.5307e–5s−3

+ 5.4995e–8s−2 + 8.4097e–12s−1

+ 1.9627e–16
]

× [
s−5 + 8.2785e–3s−4 + 1.6450e–5s−3

+ 1.0580e–8s−2 + 2.0070e–12s−1

+ 7.5838e–17
]−1

G̃Y (s) = [ − 9.2140e–4s−5 + 5.2484e–6s−4

− 1.8011e–8s−3 + 4.1319e–11s−2

− 6.1162e–14s−1 + 4.5503e–17
]

× [
s−5 + 3.8205e–3s−4 + 5.1317e–6s−3

+ 2.7094e–9s−2 + 4.7507e–13s−1

+ 1.7582e–17
]−1
G̃Z(s) = [
16.2350s−5 + 1.2302e–1s−4 + 2.2064e–4s−3

+ 1.1976e–7s−2 + 1.6304e–11s−1

+ 1.5834e–16
]

× [
s−5 + 8.3524e–3s−4 + 1.6859e–5s−3

+ 1.0923e–8s−2 + 2.0778e–12s−1

+ 7.8568e–17
]−1

Its thermal response factors are further calculated
employing Eqs. (24), (25) and the above equations.
comparison is made between the values given by Kus
and the approach developed in this study. The first
thermal response factors (k = 0,1,2, . . . ,14) are listed and
compared in Table 2. The almost negligible differen
between both series of the same thermal response fa
has fully demonstrated the high accuracy of the appro
developed in this study.

5.2. CTF coefficients

ASHRAE research project RP-472 provided a set of c
duction transfer function (CTF) coefficients [5] correspon
ing to the representative constructions of 41 plane wall ty
and 42 plane roof types. These CTF coefficients in SI
are given in the current1997 ASHRAE Handbook of Fund
mentals[16]. In most current building thermal load calc
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Table 3
Details of the wall group 6

δ [mm] λ [W·m−1·K−1] ρ [kg·m−3] cp [J·kg−1·K−1] R[m2·kW−1]

Outside air film 0.0586
Stucco 25.39 0.6924 1858 8368 0.0367
High density concrete 101.59 1.7310 2243 8368 0.0587
Insulation 25.30 0.0433 32 8368 0.5846
Plaster 19.05 0.7270 1602 8368 0.0262
Inside air film 0.1206

Table 4
Comparisons between CTF coefficients

k 0 1 2 3 4

Plane wall bk 0.002870 0.053266 0.060031 0.007228 0.000050
dk 1.000000 −1.175800 0.300710 −0.015606 0.000006

rw/rn = 1.005 bk 0.002882 0.053510 0.060328 0.007271 0.000050
dk 1.000000 −1.175411 0.300551 −0.015602 0.000005

rw/rn = 1.01 bk 0.002896 0.053772 0.060620 0.0073058 0.000051
dk 1.000000 −1.175106 0.300482 −0.015595 0.000005

rw/rn = 1.02 bk 0.002925 0.054294 0.061202 0.007375 0.000050
dk 1.000000 −1.174510 0.300361 −0.015587 0.000005

rw/rn = 1.05 bk 0.003010 0.058854 0.062940 0.007583 0.000053
dk 1.000000 −1.172740 0.299989 −0.015560 0.000005

rw/rn = 1.10 bk 0.003151 0.058433 0.065803 0.007923 0.000055
dk 1.000000 −1.169871 0.029936 −0.015507 0.000005

rw/rn = 1.20 bk 0.003430 0.063514 0.071418 0.008586 0.000060
dk 1.000000 −1.164439 0.029809 −0.015384 0.000005
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lations and building simulation programs, the transient h
gain through a pure semi-spherical or spherical structu
approximately evaluated by the CTF coefficients of the c
responding plane wall. In order to examine the rationa
and condition of this approximation, a set of spherical str
tures with different radii ratiosrout/rin are calculated. Thes
spherical structures have the same conformation as the
group 6 in1997 ASHRAE Handbook of Fundamental. That
is, their thickness and thermal properties in each layer
the same as those of the wall group 6, listed in Table 3.
CTF coefficients of the wall group 6 are given by Har
andASHRAE Handbook of Fundamentals. The radii ratios
of the spherical structures are 1.005, 1.01, 1.02, 1.05,
and 1.20, respectively. The CTF coefficients of all sph
cal structures are obtained by the procedure presented i
study and compared with those of the plane wall, show
Table 4. When the indoor temperature is kept at 24◦C and
outdoor sol-air temperature is known, the hourly inside h
gain through the spherical structures is further calculate
the obtained CTF coefficients, shown in Table 5. The ho
heat gain given byASHRAE Handbookfor the plane wall
under the same boundary conditions is also listed in Tab
The results indicate that the hourly heat gain through
spherical structures is not in the proportion ofrout/rin to
that through the plane wall under the same boundary
ditions. For the structures with the radii ratiorout/rin less
l

s

than 1.05, the maximum relative errors between the heat
through them and the plane wall are less than 5%, whic
the permitted maximum error in building thermal load c
culation. Therefore, for the case of this example, the sp
ical structure can be approximately regarded as a plane
only when its radius ratio is not greater than 1.05. Beca
of the its easiness, simplicity and high accuracy, the trans
heat flow through all pure spherical structures can be ca
lated directly and accurately by the procedure presente
this study, and does not need to be approximately treate
a plane one.

6. Conclusions

Through the total transmission matrix of transient h
conduction through a multilayer pure spherical structure
can be concluded that its characteristic equation is a
complicated one containing many hyperbolic functions
is not only quite difficult to implement the calculation
the heat conduction by finding the roots of its characteri
equation, but also incorrect calculation might take pl
due to missing several roots in the same manner a
multilayer plane wall. It is easy and simple to calculate
frequency characteristics from the transmission matrix
a multilayer pure spherical structure. Some polynomias-
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Table 5
Comparisons between hourly inside heat gain (W·m−2)

Time (h) Sol-air Plane wall Spherical structure,rout/rin

temperature (◦C) 1.005 1.01 1.02 1.05 1.10 1.20

0 25.0 13.403 13.436 13.468 13.532 13.721 14.026 14.601
1 24.4 11.646 11.671 11.695 11.742 11.883 12.108 12.528
2 24.4 9.999 10.016 10.033 10.067 10.165 10.322 10.611
3 23.8 8.517 8.528 8.539 8.561 8.625 8.725 8.908
4 23.3 7.203 7.21 7.216 7.229 7.265 7.321 7.419
5 23.3 6.016 6.019 6.021 6.026 6.04 6.06 6.09
6 23.8 4.960 4.959 4.958 4.957 4.953 4.943 4.919
7 25.5 4.081 4.079 4.076 4.07 4.053 4.023 3.964
8 27.2 3.473 3.47 3.466 3.459 3.437 3.401 3.329
9 29.4 3.209 3.206 3.203 3.197 3.18 3.151 3.097

10 31.6 3.304 3.304 3.303 3.302 3.298 3.293 3.286
11 33.8 3.755 3.758 3.761 3.767 3.786 3.817 3.884
12 36.1 4.523 4.531 4.539 4.555 4.603 4.683 4.844
13 43.3 5.584 5.598 5.612 5.64 5.722 5.86 6.133
14 49.4 7.162 7.184 7.206 7.25 7.38 7.595 8.019
15 53.8 9.498 9.531 9.563 9.629 9.825 10.148 10.782
16 55.0 12.441 12.488 12.534 12.626 12.901 13.353 14.239
17 52.7 15.591 15.651 15.71 15.829 16.184 16.766 17.904
18 45.5 18.406 18.477 18.548 18.689 19.108 19.797 21.138
19 30.5 20.260 20.337 20.413 20.565 21.018 21.76 23.201
20 29.4 20.392 20.466 20.539 20.685 21.12 21.831 23.206
21 28.3 19.019 19.083 19.146 19.273 19.649 20.261 21.439
22 27.2 17.157 17.21 17.262 17.366 17.674 18.174 19.131
23 26.1 15.247 15.289 15.330 15.413 15.658 16.054 16.807

Maximal relative error (%) 0.38 0.76 1.51 3.74 7.41 14.52
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transfer functions can also be easily constructed from
frequency characteristics by utilizing the FDR method. T
makes it quite easy to accurately calculate the transient
flow including thermal response factors and CTF coeffic
through the polynomials-transfer functions. The example
have demonstrated that the approach developed in this s
has very high accuracy. Therefore, in building therm
performance evaluation and building simulation progra
the transient heat flow through a multilayer pure spher
structure can be calculated easily, efficiently and accura
by this approach. It does not need to approximately tre
pure semi-spherical or spherical structure as a plane on
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